Noisy Matrix Completion Under Sparse Factor Models
نویسندگان
چکیده
منابع مشابه
Minimax Lower Bounds for Noisy Matrix Completion Under Sparse Factor Models
This paper examines fundamental error characteristics for a general class of matrix completion problems, where matrix of interest is a product of two a priori unknown matrices, one of which is sparse, and the observations are noisy. Our main contributions come in the form of minimax lower bounds for the expected per-element squared error for these problems under several noise/corruption models;...
متن کاملMatrix Completion Under Monotonic Single Index Models
Most recent results in matrix completion assume that the matrix under consideration is low-rank or that the columns are in a union of low-rank subspaces. In real-world settings, however, the linear structure underlying these models is distorted by a (typically unknown) nonlinear transformation. This paper addresses the challenge of matrix completion in the face of such nonlinearities. Given a f...
متن کاملMatrix Completion from Noisy Entries
Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy observations of a small, random subset of its entries. The problem arises in a variety of applications, from collaborative filtering (the ‘Netflix problem’) to structure-from-motion and positioning. We study a low complexity algorithm introduced in [KMO09], based on a combination of spectral techniques and man...
متن کاملImage Tag Completion by Noisy Matrix Recovery
It is now generally recognized that user-provided image tags are incomplete and noisy. In this study, we focus on the problem of tag completion that aims to simultaneously enrich the missing tags and remove noisy tags. The novel component of the proposed framework is a noisy matrix recovery algorithm. It assumes that the observed tags are independently sampled from an unknown tag matrix and our...
متن کاملMatrix Completion with Noisy Side Information
We study the matrix completion problem with side information. Side information has been considered in several matrix completion applications, and has been empirically shown to be useful in many cases. Recently, researchers studied the effect of side information for matrix completion from a theoretical viewpoint, showing that sample complexity can be significantly reduced given completely clean ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2016
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2016.2549040